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SUMMARY

Ground roll attenuation of land seismic data is still an outstand-
ing and challenging problem. Deep learning is a powerful tool
for separating signal from noise. Recently, supervised deep-
learning-based methods have been applied to ground roll at-
tenuation. However, they require a large set of correspond-
ing clean seismic datasets as labels. Constructing realistic
training samples for network training is an unsolved problem.
To circumvent it, we proposed an unsupervised deep learning
method for attenuating ground roll where no training labels are
utilized. The generator network first learns self-similar fea-
tures before any learning. Therefore, if the reflections are self-
similar in the time-space domain, but the ground roll is not, the
network can extract the reflections before the ground roll. To
make reflections look more self-similar than the ground roll,
we apply the normal moveout (NMO) correction to flatten the
reflections. Access to NMO correction makes the method also
model-driven. The combinations of data-driven deep learning
and a model-driven procedure are critical to the success of the
proposed method. We use both synthetic and field shot data
to illustrate the fidelity and validity of the proposed methods.
The field data example shows that our proposed method can
attenuate strong scattered ground roll.

INTRODUCTION

Ground roll is composed of surface wave modes that we usu-
ally interpret it as coherent noise. The main characteristics of
the ground roll are dispersion, high amplitude, low frequency,
and low speed. Ground roll masks the desired reflections, and
we must attenuate it without compromising reflections before
subsequent processing tasks.

In the past, researchers proposed many methods for ground
roll attenuation. Among them, filtering methods are most fre-
quently used, including f-k filtering (Embree et al., 1963; Tre-
itel et al., 1967), wavelet domain filtering (Deighan and Watts,
1997; Chen et al., 2017) and curvelet transform filtering (Yarham
et al., 2006; Naghizadeh and Sacchi, 2018). These methods
can effectively attenuate ground roll. We point out that their at-
tenuating ability may be impaired when reflections and ground
roll severely overlapped in specific time-frequency zones or in
the f − k domain.

Techniques also exist that attenuated ground roll after NMO
correction. The fact that primary reflections after NMO are ap-
proximately horizontal is important for designing coherent fil-
ters to isolate coherent noise or reflections (Liner, 1999). Por-
sani et al. (2010) proposed a ground-roll attenuation method
based on singular value decomposition (SVD). The SVD com-
putation was performed on the flattened reflections after NMO,
and this method yields better results than f-k filtering methods.

Chiu (2013) introduced a randomizing operator into a Mul-
tichannel Singular Spectrum Analysis (Oropeza and Sacchi,
2011) for a better attenuation of ground roll. The randomiz-
ing operator reorganized coherent ground roll into incoherent
noise, but primary reflections after NMO are still nearly hori-
zontal.

Deep learning is a popular topic and develops rapidly in re-
cent years. Especially in the field of image processing, deep-
learning-based methods have made breakthroughs. At the same
time, deep learning has also been applied to various applica-
tions of seismic data processing, including random noise de-
noising (Liu et al., 2020), ground roll attenuation (Li et al.,
2018) and strong background-noise separation (Liu et al., 2019).
Constructing training samples and then feeding them to the
network for training seems to be a standard workflow for de-
noising methods based on deep learning. However, the latter
requires a large set of clean seismic data, an imposition that
may be hard to satisfy in practice. Although the processing
speed of deep learning can be significantly improved, estimat-
ing a large number of genuinely realistic-looking synthetics
for training is a challenge. Therefore, it is necessary to de-
velop unsupervised deep learning methods for denoising seis-
mic data. Zhang et al. (2019) proposed an unsupervised ran-
dom noise attenuation method based on autoencoder. Simi-
larly, Liu et al. (2020) proposed a method for pre-stack ran-
dom noise attenuation based on deep convolutional networks
without labels.

In this abstract, we propose a new ground-roll attenuation
method based on unsupervised deep learning. Our proposed
method combines the merits of deep learning and the knowl-
edge of approximate moveout velocities. Firstly, we apply
the NMO correction to the raw seismic data for flattening
the reflections. After the NMO correction, the reflections are
nearly horizontal and self-similar, while the ground roll is not.
Then, we utilize deep convolutional networks to extract self-
similar features. Inspired by Ulyanov et al. (2018), we real-
ize that the process of extracting self-similarities by learning
noisy seismic data using a generator network with randomly
initialized inputs. In the training process, the generator net-
work can model the self-similarly horizontal reflections leav-
ing the ground noise in the noise space. After the specified
number of iterations in the optimization process, the gener-
ator network can easily extract all the horizontal reflections.
The subtraction of the extracted reflections from the raw seis-
mic data yields the attenuated ground roll. NMO flattening in
shot gather is not fully correct as reflections in the shot do-
main can have apexes that are asymmetric with offset. Never-
theless, the assumption is valid for sedimentary environments
with non-significant structural dips. We mention that the hy-
perbolic moveout assumption in the shot domain is also used
by industry-proven methods such as those proposed by Perkins
and Zwaan (2000) and Le Meur et al. (2008).
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METHOD

In this section, we present our unsupervised method for ground-
roll attenuation. Firstly, we introduce the model formulation.
Then, we show the architecture of the deep generator network.
Finally, we provide some information about the strategy for
model training.

Model formulation

We model the seismic data, denoted by a vector r0, as a super-
position of reflections and ground roll

r0 = r+g+n, (1)

where r represents reflections, g is the ground roll noise, and n
is the random nosie. We parameterize the seismic data r via a
generator network as follows

r = fθ (z), (2)

where f represents the nonlinear generator network, θ denotes
the network parameters comprising the weights and bias of the
network filters, and z is a random vector. Inserting equation
(2) into equation (1) gives leads to

r0 = fθ (z)+g+n, (3)

where the only unknown parameters are θ . Then, the task of
ground roll attenuation from the seismic data is equivalent to
finding the optimal network parameters θ∗ to minimize the en-
ergy function:

θ
∗ = argmin

θ

E (fθ (z) ;r0) . (4)

The energy function E (fθ (z) ;r0) used in this abstract is the
following formulation:

E (fθ (z) ;r0) = ‖fθ (z)− r0‖2. (5)

Once θ∗ is determined, we can obtain the recovered reflections
quickly from the output of the generator network r∗ = fθ ∗ (z).

Network architecture

The network architecture adopted in our work is a U-Net type
fully convolutional network comprising downsample blocks,
skip blocks, and upsample blocks. Convolutional layers, batch
normalization, downsampling layers, upsampling layers, and
activation function layers are the basic units, as shown in Fig-
ure 1. We use 5 downsample blocks, and 5 upsample blocks
to code and decode the input, which provides feature extrac-
tion capability at multiple scales. Furthermore, the convo-
lutional filters enable the network to extract self-similar fea-
tures at multiple scales. The number of feature channels in-
creases with downsampling, from 8 to 128, which is a trade-off
between feature extraction ability and computing efficiency.
Also, we make several modifications compared to the origi-
nal U-Net. First, to reduce checkerboard artifacts caused by
the upsample blocks, we replace bi-linear interpolation with
transposed convolution. Secondly, substituting leaky RELU
for RELU to prevent neuron annihilation. Thirdly, we adopt a

Figure 1: The network architecture used in this abstract

skipping block strategy to avoid the gradient vanishing prob-
lem.

Model training

As it can be seen from Equation (4), our proposed method is an
optimization problem under l2 norm. The code vector z is sam-
pled from [−1,1] uniform distribution and has the same spatial
dimensions as r0. Optimization of Equation (4) is an unsuper-
vised network training problem that only relies on the deter-
mined code vector z and the raw seismic data r0. The ADAM
optimizer is applied to train the network and iteratively solve
the optimization problem. When training starts, the network
parameters are randomly initialized to θ0. Then, the energy
function in Equation (5) decreases gradually as the training
continues. At each iteration, the parameters θ are mapped to
a network output r = fθ (z). We can regard the optimization
process as the reconstruction process of r0 by the generator
network. In other words, the network gradually extracts fea-
tures along with the training process.

The features extracted by the network in different training pe-
riods are different. Due to the specific network structure in
Figure 1, the network can extract self-similar features at mul-
tiple scales. Therefore, the network can reconstruct reflections
because they have self-similar features. However, the network
cannot extract self-similar features from random noise. Hence,
it cannot restore random noise. In other words, in the early
iterations of training, the network mainly reconstructs the re-
flections. After a long time of iterative training, the network
starts to rebuild the noise. Therefore, we can use the gener-
ator network to suppress random noise by adopting an early
stopping strategy.

Before training, we apply NMO correction to the raw seismic
data r0 to flatten the reflections. The horizontal reflections
have more self-similarities than ground roll, so the generator
network can reconstruct them before the ground roll, as shown
in Figure 2. By selecting a specific number of iterations, we
can separate the ground roll from the reflections. Although the
best results can be achieved by tuning the number of iterations
carefully, we found that a wide range of iteration numbers give
us acceptable results.
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Figure 2: The training process of the network.

EXAMPLES

Synthetic example

Figure 3 shows the synthetic data modeled in the frequency
domain. The synthetic data is composed of three reflections
modeled by hyperbolic events and ground roll modeled by lin-
ear events. This shot model contains 9 gathers, and each of
them has 40 traces with a 40m spatial sampling interval. The
time sampling interval is 4 ms, and the interval between re-
ceiver lines is 120m. The velocity of reflections and zero offset
travel time are known. Therefore, we can apply the NMO cor-
rection to the reflections and flatten them. Figure 3 shows the
estimated ground roll obtained by subtracting Figure 3b from
Figure 3a. We see that the ground roll is almost completely
removed, and no significant reflection energy is lost.

Field data example

The field data is a land data acquired in Western China. We use
a common-shot gather containing 16 receiver lines to examine
the effectiveness of the proposed method. To get better atten-
uation results, we recommend a three-step process procedure.
First, we remove industrial noise following Chen et al. (2019).
Then, we remove part of the ground roll under the premise of
not damaging the reflections following Chen et al. (2017). Fi-
nally, we use NMO correction to flatten reflections. As shown
in Figure 4, we notice that the energy of the ground roll is sig-
nificantly weakened, and the target layer becomes clear. Fig-
ure 5 is an enlarged result of the part shown in the red block
of Figure 4. It can be seen that some clean and continuous re-
flections are recovered, especially in the regions indicated by
the yellow box and the red arrow. Most energy of the strong
scattered ground roll is attenuated without significant loss of
reflections energy.

CONCLUSION

We propose an unsupervised method based on deep learning
for ground roll attenuation without requiring high-quality train-
ing labels. We use a generator network to reconstruct the raw
seismic data. The network has a strong multi-scale self-similarities
feature extraction capability to recover the reflections. NMO
correction is applied to flatten the reflections before network
training. Both synthetic and field data are utilized to demon-
strate the effectiveness of the presented method.
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Figure 3: Synthetic example. (a) Synthetic data composed of reflections modeled by hyperbolic events and gound roll modeled by
linear events. (b) Reflections obtained by the proposed method. (c) Ground roll obtained by the proposed method.
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Figure 4: Field data result. (a) Original data. (b) Separated reflections. (c) Separated ground roll.

Figure 5: Zoom results of field seismic data. (a) Original data. (b) Separated reflections. (c) Separated ground roll. Most energy of
the strong scattered ground roll is attenuated and many reflections indicated by the yellow box and the red arrow are recovered.
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